Research
Research and expertise
I am interested in a range of non-linear and complex phenomena and ways of analysing such systems. At the heart of contemporary interests is the role of non-locality and non-equilibrium phenomena in the dynamics of turbulent flows. Turbulence has been described as the last great problem in classical physics and the regularity of the Navier-Stokes equations is a Clay Millenium problem, highlighting some of the technical difficulties. However, even small developments in this area have profound practical implications.
Broadly associated work involves the development of synthetic data for formulating null hypotheses for the study of complex phenomena. These have been applied to financial, geomorphological, hydrological and turbulence data.
If there is an unique dimension to my work, it is perhaps the statistical and physics-based perspective I bring to bear on rather mathematical topics. As such, I have made some contributions to intermittency science and multifractal methods using wavelet techniques, as well as applied matrix analysis methods. I am interested in using the latter to develop new closure models for turbulence, for use in applied computational fluid dynamics.
Recently completed research projects
- Traditional analyses of the velocity gradient tensor in turbulence are either based on the additive decomposition into strain and rotation, or based on the eigenvalues. We extended the latter to incorporate non-normal parts of the tensor and then undertook the strain and rotation decomposition to discover new terms in the fundamental equations. This work was published in Journal of Fluid Mechanics.
- We have shown that there is an unique velocity-intermittency structure to canopy turbulence that seems to hold for atmospheric and hydrodynamic cases (work with Duke, MIT and Western Australia) and was published in Environmental Fluid Mechanics.
- We have shown that the amplitude modulation of boundary-layer can be written in terms of a coupling between Hölder exponents and the large scale velocity variation (work with Southampton and Melbourne). This work was published in Fluid Dynamics Research and won the 10th Fluid Dynamics Research Prize.